

The Photodimerization of Anthracene-9-d1 Scott Conrad, Sulthana Fehroza P.P., Edwin F. Hilinski PhD and Jack Saltiel PhD Department of Chemistry and Biochemistry

Background

- Anthracene photodimerization, a $[4\pi+4\pi]$ cycloaddition reaction, occurs via a singlet excimer (¹AA*) in two ways • In the first, ¹AA* forms when singlet excited anthracene,
- ¹A*, encounters ground state anthracene, ¹A
- In the second, two triplet excited states, ³A*, encounter and undergo triplet-triplet annihilation (TTA) to form nine encounter pairs (a quintet, a triplet and a singlet); the singlet is assumed to be (¹AA*)
- Deuterium substitution at the 9 position of A can influence dimerization due to (1) a secondary kinetic isotope effect (KIE) and (2) an electron-nuclear hyperfine effect (hfi)
- The KIE is the difference in the rate of CC bond formation with and without the D
- The hfi effect is the interaction of the magnetic moments of the spins of electrons and nuclei; this effect may cause a difference in the efficiency of interconversion of TTA spin states when D is substituted for H

Excitation to triplet state via sensitizer (S) and TTA (R)

References

- Breton, G. W.; Vang, X. Photodimerization of Anthracene: A $[4\pi+4\pi]$ Photochemical Cycloaddition. *Journal of Chemical Education* **1998**, 75:1, 81–82.
- Saltiel, J. Surv. Prog. Chem. 1964, 2, 239.
- Saltiel, J.; Marchand, G. R.; Smothers, W. K.; Stout, S.A.; Charlton, J. A. Concerning the Spin-Statistical Factor in the Triplet-Triplet Annihilation of Anthracene Triplets. J. Am. Chem. Soc. **1981**, 103, 7159-7164.
- Turro, N. J. Micelles, Magnets and Molecular Mechanisms. *Pure & Appl. Chem.* **1981**, 53, 259-286.
- 5. A. Streitwieser Jr., R. H. Jagow, R. C. Fahey, S. Suzuki, J. Am. Chem. Soc. 1958, 80, 9, 2326–2332.

Methods

- Solutions for direct irradiation were prepared by dissolving A and A-9-d each in dichloromethane
- Solutions were transferred to special NMR tubes and degassed using 4 freeze-pump-thaw cycles to 2.1 * 10⁻⁴ Torr
- Direct irradiation was done in a merry-go-round apparatus with a Hanovia 200-W Hg Lamp, filtering out light wavelengths below 313 nm
- ¹H NMR spectra were recorded before irradiation, every 5 min of irradiation up to 20 min. and after a full hour of irradiation
- Rates of A loss were based on relative peak areas in the ¹H NMR spectra

¹H NMR spectra in the course of direct irradiation

Anthracene-9-d

				-5
				-4
				-3
				-2
				-1
8.5 8.0	Anthr	6.5 6.0 (ppm)	<u>5.5</u> 5.0	4.5

Conclusions

Time (min)	%A left	[A] (x10 ⁻³ M)	Δ[A] (x10 ⁻³ M)	%9dA left	[9dA] (x10 ⁻³ M)	Δ[^{9d} A](x10 ⁻³ M)	Δ[A] / Δ[^{9d} A]
0	100%	5.04	0	100%	5.44	Ο	—
5	95.8%	4.83	0.21	96.0%	5.22	0.22	0.95
10	91.2%	4.62	0.42	92.1%	5.01	0.43	0.98
15	87.1%	4.39	0.65	88.6%	4.82	0.62	1.05
20	82.9%	4.18	0.86	84.2%	4.58	0.86	1.00

No secondary D KIE present under direct irradiation.

Bridgehead NMR Peaks: Each peak corresponds to either the HH or HT isomer

Our future plans are to find the location of the HT dimer peak through the 9-bromo-10-deuteroanthracene dimer (below).

Additionally, we plan to compare the sensitized dimerization between A and A-9-d to determine if secondary D KIE or hfi are present in the triplet pathway.

Looking at the bridgehead NMR peak one can tell that either the HH or HT isomer forms more than the other; the ratio was determined to be about 1:2.75, which is highly unexpected.

The cause of the disparity is unknown, but we suspect it is due to polar interactions created by the increased electron density around C in CD bonds relative to CH bonds.